One of the following statements is true and one is false. SCORE:/ 18 PTS State clearly which statement is false, show that it is false, then write a formal proof for the true statement.
[a] The set of irrational numbers is closed under multiplication. [b] If the sum of two integers is odd, then exactly one of the integers is odd. YOU WEED TO SAY "FALSE"
[a] is false. For example, $\sqrt{2}$ is irrational, but $\sqrt{2} \times \sqrt{2} = 2 = \frac{2}{1}$ is not irrational.
[b] is true. There are two possible solutions, depending on whether you used contraposition or contradiction. SOLUTION 1: GRADE AGAINST ONLY I SOLUTION
CONTRAPOSITIVE: For all integers x and y , if it is not the case that exactly one of x and y is odd, then $x + y$ is not odd.
PROOF BY CONTRAPOSITION:
Let x and y be particular but arbitrary chosen integers such that it is not the case that exactly one of x and y is odd.
So, either both x and y are odd, or neither x nor y are odd.
CASE 1: Both x and y are odd
So, $x = 2m + 1$ and $y = 2n + 1$ for some integers m and n by definition of odd
$x + y = 2(m + n + 1)$ where $m + n + 1 \in \mathbb{Z}$ by the closure of \mathbb{Z} under $+$
80x + y is even by definition of even
$(\frac{1}{2}S_0, x + y)$ is not odd by Parity Property
CASE 2: Neither x nor y are odd
So, both x and y are even by Parity Property
So, $x = 2m$ and $y = 2n$ for some integers m and n by definition of even
$x + y = 2(m + n)$ where $m + n \in \mathbb{Z}$ by the closure of \mathbb{Z} under $+$
So $x + y$ is even by definition of even
So, $x + y$ is not odd by Parity Property \bigcirc
So, $x + y$ is not odd
Therefore, by contraposition, if the sum of two integers is odd, then exactly one of the integers is odd
MUST STATE FULL SENTENCE FOR THIS POINT,
NOT JUST
"THE STATEMENT
IS TRIE"

SOLUTION 2:

PROOF BY CONTRADICTION:

Suppose not, that is, suppose there are integers x and y such that x + y is odd,

but it is not the case that exactly one of x and y is odd.

So, either both x and y are odd, or neither x nor y are odd.

CASE 1: Both x and y are odd

So, x = 2m + 1 and y = 2n + 1 for some $m, n \in \mathbb{Z}$ by definition of odd

x + y = 2(m + n + 1) where $m + n + 1 \in \mathbb{Z}$ by the closure of \mathbb{Z} under +

So, x + y is even by definition of even

CASE 2: Neither x nor y are odd

So, both x and y are even by Parity Property

x = 2m and y = 2n for some $m, n \in \mathbb{Z}$ by definition of even

x + y = 2(m + n) where $m + n \in \mathbb{Z}$ by the closure of \mathbb{Z} under y = 2(m + n) where y = 2(m + n) is even by definition of even y = 2(m + n) where y = 2(m + n) is even by definition of even y = 2(m + n) where y = 2(m + n) is even by definition of even y = 2(m + n).

So, x + y is odd and x + y is even (contradiction of Parity Property)

MUST STATE FULL
SENTENCE FORTHIS POINT
NOT TUST | "THE STATEMENT
INTEGERS IS ODD IS TRUE"

Therefore, by contradiction, if the sum of two integers is odd, then exactly one of the integers is odd

Find the values of (-39) div 11 and (-39) mod 11. SCORE: 4 PTS Justify your answers VERY briefly. You do NOT need to write a proof. (-39) div 11 = -4 and (-39) mod 11 = 5

since $-39 = -4 \times 11 + 5$

Write the Ouotient Remainder Theorem symbolically. $\forall d \in \mathbf{Z}^+, \mid \exists ! q, r \in \mathbf{Z} : \mid n = dq + r \mid \land \mid 0 \le r < d \mid$ Fill in the blank with the value that makes the statement true, then write a formal proof of the resulting statement. SCORE: _____/9 PTS

"For all integers n, if $n \mod 3 = 2$, then $(n^2 - 6) \mod 3 = 1$."

UNLESS OTHERWISE

Let n be a particular but arbitrary chosen integer such that $n \mod 3 = 2$.

So,
$$n = 3q + 2$$
 for some $q \in \mathbb{Z}$ by definition of mod.

So,
$$n^2 - 6 = 9q^2 + 12q - 2 = 3(3q^2 + 4q - 1) + 1$$
 where $3q^2 + 4q - 1 \in \mathbb{Z}$ by closure of \mathbb{Z} under \times and $+ \cdot \cdot$

So, $(n^2 - 6) \mod 3 = 1$ by definition of mod.

PROOF: